These are the answers to puzzles that appeared in the Chalkdust newsletters. You can find the puzzles here and sign up for the newsletter here.

### 121

121 is a square number in every base larger than 3.

In base $n$, $$121_n = 1 + 2n + n^2$$ $$=(1+n)^2.$$

### Polya Strikes Out

Source: mscroggs.co.uk
1, 3, 7, 12, 19, …
1, 7, 19, …
1=1; 1+7=8; 1+7+19=27; …
1, 8, 27, …

The final sequence is the cube numbers. To show why, let $n$ be an integer and follow through the process.

Cross out every third number:

1, 2, 3, 4, 5, 6, …, 3n, $3n+1$, $3n+2$, …
1, 2, 4, 5, …, $3n+1$, $3n+2$, …
Find the cumulative sums:
$$1=1$$ $$1+2=1+2=3$$ $$1+2+4=1+2+3+4-3=7$$ $$1+2+4+5=1+2+3+4+5-3=12$$ $$…$$
$$1+2+4+5+…+(3n+1)=\sum_{i=1}^{3n+1}-\sum_{i=1}^{n}3i$$ $$=\frac{1}{2}(3n+1)(3n+2)-\frac{3}{2}n(n+1)$$ $$=3n^2+3n+1$$ $$1+2+4+5+…+(3n+2)=3n^2+3n+1+(3n+2)$$ $$=3n^2+6n+3$$ $$…$$
1, 3, 7, 12, …, $3n^2+3n+1$, $3n^2+6n+3$, …

Cross out every second number, starting with the second:

1, 3, 7, 12, …, $3n^2+3n+1$, 3n2+6n+3, …

1, 7, …, $3n^2+3n+1$, …

Find the cumulative sums. The $m$th sum is:

$$\sum_{n=0}^{m}3n^2+3n+1$$ $$=3\sum_{n=0}^{m}n^2+3\sum_{n=0}^{m}n+\sum_{n=0}^{m}1$$ $$=\frac{3}{6}m(m+1)(2m+1)+\frac{3}{2}m(m+1)+m+1$$ $$=\frac{1}{2}(m+1)(m(2m+1)+3m+2)$$ $$=\frac{1}{2}(m+1)(2m^2+m+3m+2)$$ $$=\frac{1}{2}(m+1)(2m^2+4m+2)$$ $$=(m+1)(m^2+2m+1)$$ $$=(m+1)(m+1)^2$$ $$=(m+1)^3$$
Hence the numbers obtained are the cube numbers.

These are the answers to puzzles that appeared in the Chalkdust newsletters. You can find the puzzles here and sign up for the newsletter here.

### 121

121 is a square number in every base larger than 3.

In base $n$, $$121_n = 1 + 2n + n^2$$ $$=(1+n)^2.$$

### Polya Strikes Out

Source: mscroggs.co.uk
1, 3, 7, 12, 19, …
1, 7, 19, …
1=1; 1+7=8; 1+7+19=27; …
1, 8, 27, …

The final sequence is the cube numbers. To show why, let $n$ be an integer and follow through the process.

Cross out every third number:

1, 2, 3, 4, 5, 6, …, 3n, $3n+1$, $3n+2$, …
1, 2, 4, 5, …, $3n+1$, $3n+2$, …
Find the cumulative sums:
$$1=1$$ $$1+2=1+2=3$$ $$1+2+4=1+2+3+4-3=7$$ $$1+2+4+5=1+2+3+4+5-3=12$$ $$…$$
$$1+2+4+5+…+(3n+1)=\sum_{i=1}^{3n+1}-\sum_{i=1}^{n}3i$$ $$=\frac{1}{2}(3n+1)(3n+2)-\frac{3}{2}n(n+1)$$ $$=3n^2+3n+1$$ $$1+2+4+5+…+(3n+2)=3n^2+3n+1+(3n+2)$$ $$=3n^2+6n+3$$ $$…$$
1, 3, 7, 12, …, $3n^2+3n+1$, $3n^2+6n+3$, …

Cross out every second number, starting with the second:

1, 3, 7, 12, …, $3n^2+3n+1$, 3n2+6n+3, …

1, 7, …, $3n^2+3n+1$, …

Find the cumulative sums. The $m$th sum is:

$$\sum_{n=0}^{m}3n^2+3n+1$$ $$=3\sum_{n=0}^{m}n^2+3\sum_{n=0}^{m}n+\sum_{n=0}^{m}1$$ $$=\frac{3}{6}m(m+1)(2m+1)+\frac{3}{2}m(m+1)+m+1$$ $$=\frac{1}{2}(m+1)(m(2m+1)+3m+2)$$ $$=\frac{1}{2}(m+1)(2m^2+m+3m+2)$$ $$=\frac{1}{2}(m+1)(2m^2+4m+2)$$ $$=(m+1)(m^2+2m+1)$$ $$=(m+1)(m+1)^2$$ $$=(m+1)^3$$
Hence the numbers obtained are the cube numbers.

• ### Chalkdust issue 11 puzzle hunt #4

Humbug sets the fourth puzzle. Can you solve it?
• ### Read Issue 11 now!

Space-filling curves, cheating at cards and automated joke generation feature in our latest edition. Plus all your favourite puzzles & columns.
• ### Launch day puzzle hunt

Celebrate the launch of issue 11 by taking part in our puzzle hunt
• ### Prize crossnumber, Issue 11

£100 of MathsGear goodies to be won if you can solve it
• ### What is the shape of you?

Are you a torus? A cone? Ed Spheran? Find out by answering a maximum of five easy questions
• ### Dear Dirichlet, Issue 11

Grant applications, musical media and last-minute Olympics training are the topics readers have sent in to the professor's postbox this issue