Making your own papercupter

Papercupter competition

Finding the best design for a papercupter is not easy as there are many designs, for instance, with longer or shorter flaps, curvier or straight, only a few flaps or as many as you can get from your paper cup. The number of different papercupters is infinite and so finding the one that spins the most or the one that stays in the air for the longest time is impossible.

There are some papercupter designs which clearly won’t work, for instance, one with flaps so small that it does not make the papercupter spin as it falls down, or one with so many flaps that they become thin strips of paper with no air resistance.

Last week we were able to play a papercupter competition (during the 2017 De Morgan Dinner) and more than 50 different designs competed against each other. The papercupters which made it to the final round had, in general, only a small number of long flaps.

Rosalba, winner of the 2017 Papercupter competition and her design for the best papercupter.

Try your own papercupter!

Different paper cups also have a different design for the best papercupter, but let us know in the comments below which was the best papercupter you could find! Also, send us your pictures and videos through Facebook, Twitter or by email!


Taking the (mathematically) perfect picture at the Leaning Tower Of Pisa

Hundreds, perhaps thousands of tourists visit Pisa every day —mainly for its famous leaning tower. They rush from the train station, through the bridges and medieval alleys just to stand near the tower and take that picture they have dreamed of, posing in as many creative (and sometimes ridiculous!) ways as imaginable. The basic one is the Power Ranger, pretending to push the tower back to its vertical position, but there are many others: “I’m going to eat a tilted gelato”; or groups that pretend to push the tower as if it was Raising the Flag on Iwo Jima; or lovely couples, perhaps on their honeymoon, pushing the tower, each one on opposite sides (aww). Continue reading


The croissant equation

If you have a sweet tooth, then perhaps you enjoy just standing outside a fancy bakery and observing the many cakes and bakes from the shop, from their indulgent red velvet cupcakes, creamy sponges or decadent brownies. Cakes, cookies and cupcakes are complicated pieces of baking engineering which require sophisticated techniques to get the many flavours and textures into the single bite that you enjoy so much. Continue reading


In conversation with Marcus du Sautoy

For many people, Marcus du Sautoy might just be the most recognisable face in modern mathematics (although Carol Vorderman fans may disagree with this assertion!). He writes regularly for several national UK newspapers, is a frequent guest on the BBC and is about to release his fifth book. He has also taken mathematics to some more unconventional places, including the Glastonbury festival, the Royal Opera house and the Barbican. His academic work focuses on number theory and group theory, something that he says appeals to him due to its inherent structure, and because once you have the right idea “it kind of runs itself”. This love for big ideas and the story of mathematical discovery will be familiar to anyone who has ever seen him enthusiastically explain one of his favourite subjects, Euclid’s proof that there are infinitely many primes, on radio, television or in print.

The author of the article and Marcus du Sautoy standing, smiling, in du Sautoy's study

I feel sorry for all the toys with composite numbers on them.

However, despite his broad research background and his familiarity with, dare we say it, intimidating-sounding concepts such as ‘zeta functions of infinite-dimensional Lie algebras’, du Sautoy assures us that he is not the sort of person who “gets things really quickly”. This, he says, has helped him become effective at communicating mathematics—you must “get in the head of your audience” and understand why they aren’t comfortable with a concept, or “find the thing that they get, which you can use” to take them on the same journey that you have been through on your own road to understanding. In short, it is empathy.

Continue reading


To share, or not to share

The Montagues and the Capulets have never been friends and Juliet is quite aware of this. Even at her young age, she knows that her love for Romeo is an impossible dream her father will never accept. So, she designs a strategic plan. She will take a couple of sleeping pills, just enough to make her look like she is dead to trick everyone into thinking that she has passed away. Brilliant! If everything goes right, she will always be happy with Romeo… but if things go wrong… well, you never know. Continue reading


Should you buy a Valentine’s day present?

Valentine’s day is just around the corner and you are still not sure whether or not you should buy your beloved one a present.  It’s a tough call. Should you spend money on buying your partner some chocolates and a teddy bear (that no one wants anyway), or will you risk it and bring only a charming smile to your romantic dinner? Continue reading


Catching criminals with maths

As a result of decades of empirical research, crime science has emerged as the leading multidisciplinary approach to develop new ways to tackle crime and terrorism. As opposed to traditional criminologists, crime scientists commonly use a broad spectrum of different disciplines and sciences to achieve their aim of cutting crime. Using knowledge from chemistry, geography and physics, to architecture, public health, psychology and information technology, crime science has been able to offer new solutions to the most pressing issues that impact on the health and security of millions of people. Among all the fields and disciplines used, applied mathematics, statistics and econometrics are perhaps the most common tools used by crime scientists.  Continue reading


The spider witch project

If spiders could count all the way up to forty, calculate angles and tensions, then perhaps we could explain why their webs all follow a similar pattern, having a similar number of strings and turns and flips… but the reality is that they (probably) can’t, so the fact that webs are similar must be because spiders are really good at minimising functions! Continue reading