Modelling blood

From understanding the effect of aneurysms and what causes strokes to simulating and constructing artificial organs, maths has a huge role to play in developing new medical treatments. But one key part of the human physiology is the study of blood. It’s fairly obvious that blood is key to life – if you bleed too much you die. It has been studied by many eminent figures, from Aristotle who believed blood was required to transport heat around the body to Poiseuille who derived derived a simplified model of mathematical flow in a pipe to describe flow through arteries. We now understand that blood carries oxygen and essential nutrients to our cells, and carries waste products such as urea away to be processed.

Continue reading


Catching criminals with maths

As a result of decades of empirical research, crime science has emerged as the leading multidisciplinary approach to develop new ways to tackle crime and terrorism. As opposed to traditional criminologists, crime scientists commonly use a broad spectrum of different disciplines and sciences to achieve their aim of cutting crime. Using knowledge from chemistry, geography and physics, to architecture, public health, psychology and information technology, crime science has been able to offer new solutions to the most pressing issues that impact on the health and security of millions of people. Among all the fields and disciplines used, applied mathematics, statistics and econometrics are perhaps the most common tools used by crime scientists.  Continue reading