Imagine three mice equally distanced from each other, ie at the vertices of an equilateral triangle. If at the same time, all three mice start chasing their neighbour clockwise, then each of their paths would be a logarithmic curve. But this is rather hard to draw, especially if we want to restrict ourselves to only using a ruler.
Instead, let us imagine that the mice can only run in a straight line and need to stop to reassess their direction. If at a given stage we draw their intended path, and assume that the mice cover a tenth of the distance to the next mouse before stopping and reassessing their direction, we get the picture below. While these pictures have been drawn using straight lines only, we see three logarithmic spirals emerging:
But why stop there? Why not start with $4$, $5$ or $n$ mice on the vertices of a regular square, pentagon or $n$-gon? The following instructions show a very algorithmic approach to drawing these patterns: