We meet Eugenia Cheng a couple of hours before she’s scheduled to give a talk at City University, where she’ll make another stop on her journey to “make abstract mathematics palatable” in the public consciousness. With over 10 million views on YouTube, three best-selling books in How to Bake Pi (2015), Beyond Infinity (2016) and The Art of Logic in an Illogical World (2018), and interviews ranging from the BBC to late night US television, it’s safe to say Cheng has made incredible progress on her mission.
Not ‘just’ a mathematician
In talking to Cheng, you quickly realise that she is always trying new activities, pursuing further study and pushing herself to understand more of the world around her. She read voraciously growing up, but describes mathematics as “the only subject to stand up to [her] desire for rigour”. In attempting to satisfy her “curiosity for asking why things are true”, Cheng learned of category theory, the study of relationships between similar themes and concepts in different branches of mathematics. She describes this field as particularly abstract, but remarks that it could be viewed as a prerequisite to most undergraduate courses in the way it identifies links in areas of mathematical study. In her view, category theory does for mathematics what mathematics does for the world. This concept takes a little bit of mental gymnastics, and Cheng takes it a step further in her current research in higher-dimensional category theory. She studies the relationships between the relationships themselves, adding “an extra layer of subtlety” to her understanding of mathematics.
It’s clear that Cheng’s research has influenced the way she approaches her other passions, which include food, music, and teaching. An avid baker, Cheng’s first book, How to Bake Pi, begins each chapter with a recipe for the reader to try. This method mirrors the conversations that introduce chapters in Douglas Hofstadter’s seminal work Gödel, Escher, Bach: An Eternal Golden Braid, which she credits as a “very influential book” for her approach to writing about mathematics. Cheng believes that the general public is suffering from a severe case of “maths phobia”, and that introducing mathematics in recognisable, accessible ways is far more effective than teaching times tables and long division. On her appearance on The Late Show with Stephen Colbert in 2015, Cheng introduced the concepts of exponentials through making mille-feuille live with the host. Children as young as seven have, through How to Bake Pi, gained an understanding of complicated abstract mathematics, and she recounts a story of a five-year-old calling out to her “I’m your biggest fan!” at one of her outreach talks. By giving younger and younger children an appreciation of what mathematics can do and how it is expressed in the world around us, Cheng believes that the fear of mathematics so many schoolchildren feel will erode and disappear over time.
Cheng is the founder of the Liederstube, an environment for classical musicians to come together and enjoy performances in a relaxed setting, based in the Fine Arts building in Chicago. A talented pianist, Cheng performs alongside her busy schedule writing books and giving talks. When asked about whether performing in concert halls is more nerve-wracking than giving talks at the Royal Institution, Cheng doesn’t hesitate: “Compared with playing the piano, public speaking is easy! You can say whatever you want, and you don’t have to say particular things in a particular order.”
As the scientist in residence at the Art Institute of Chicago, Cheng teaches abstract mathematics to undergraduate art majors. She enjoys teaching mathematical ways of thinking to socially conscious students, giving them the ability to “frame social issues in a mathematical sense”. Perhaps these students represent the ultimate cases of maths phobia, but according to Cheng, there is a lot more in common between those that study mathematics and the students she sees weekly. Through her courses, Cheng is learning as much from her students as the other way around. She had not realised the applications of mathematical thinking as a “framework to agreeing on the world, something badly needed in today’s public discourse”. The parallels between Cheng’s passions and her research are immediately apparent. She finds the mathematical similarities between music, food, and teaching in the same way she identifies connections between areas of mathematics in category theory.
Women in mathematics
As a prominent woman in mathematics, especially in popular culture, the question of the gender gap inevitably came up. By Cheng’s own admission, she “was initially reluctant to address the issue” at the beginning of her career. A firm believer in the meritocracy of academia, she is certain she’s “able to achieve anything a man could in mathematics”. Cheng says that “when women in academia are young and not treated with much respect, they think it’s because they are young and junior. But as they progress, they continue to notice the lack of respect, making it clearly a feminist issue.” Cheng has also realised how important it is to act as a role model, and has embraced the challenge of becoming more visible to young women in mathematics. For Cheng, the most important message to communicate to these students is that “they are good enough”. Students that are struggling are “not finding it difficult because they don’t understand. They are seeking a deeper level of understanding-exactly the kind of person needed in higher level mathematics.” Cheng sees a marked difference in how the average female student approaches applying to PhD courses compared to their male counterparts. She admits that if she had not been offered the opportunity to study for her doctorate at her first choice (Cambridge), she would have given up pursuing a career in higher level mathematics, taking the rejection as a comment on her ability. She believes that in applying for mathematical postgraduate positions, women have to take the same persistent approach that men do, applying for any opportunity that allows them to follow their passions.
Cheng also feels that too much self-confidence in one’s own abilities doesn’t make the best students. “Most people think that self-confidence is the most important part of being a mathematician, whereas I believe that self-criticism is far more important. I’d much rather work with a student that underestimated their own abilities, than the other way around.
Most people think that self-confidence is the most important part of being a mathematician… I believe that self-criticism is far more important.
In fact, Cheng believes there needs to be a reframing of the whole argument, proposing new words to replace masculine and feminine, as “we shouldn’t prescribe behaviours to genders”. For masculine, Cheng suggests `ingressive’. “Ingressive-it’s all about getting the right answer, being competitive, being first, exactly the way we teach mathematics at a young age.” Even the way we test is ingressive: “Exams are an ingressive thing too,” Cheng says. “You have to get as much done as you can, as right as you can, as quick as you can.” But research isn’t like that at all. “Research is congressive,” Cheng explains, using her replacement word for feminine. “You’re trying to discover deeper insight, you have to work collaboratively. It takes time and it takes patience.” And therein lies the problem, according to Cheng. “We’re selecting ingressively for a subject that should be very congressive in nature,” she concludes. “I suspect we’re losing a lot of talent this way.
The art of logic
Just before Cheng has to nip off for her talk, we move onto the subject of her new book, The Art of Logic in an Illogical World. “This really grew out of teaching art students because the ones I teach are so socially conscious, and want to change the world,” Cheng says. “It was a bit like when I used baking to perk up my mathematics undergraduates. If I talked about a social issue from a mathematical point of view, then they were all completely alert.” The book is a summary on the “insights mathematical thinking gives me on social and political issues.” In summary, the book is about “the nature of disagreement.”
Mathematics is a way of being clear and unambiguous, and we need that today.
We later attend one of Cheng’s talks at the Royal Institution, based on her book, and it’s fascinating to see how mathematical thinking could be applied to questions of LGBT rights, racial privilege and political disagreement. “I always read the comments below news articles,” Cheng said, prompting a sympathetic laugh from the audience, “You have to! You have to know how people see the world so you know how to talk to them.” Cheng’s belief that mathematical principles allow us to cut through overly complicated debate is infectious and so clear, you wonder how anyone could possibly disagree.
“Mathematics is a way of being clear and unambiguous, and we need that today,” Cheng concludes. Through her writing, talks and outreach work, there’s no debating the important work she’s doing for the subject, curing cases of maths phobia every day.