Here at Chalkdust HQ, we love inventing ways to make Sudoku-style puzzles more interesting. This week, I will be sharing some 3D puzzles, which I call Cuboku.
To build a Cuboku, start with a small Sudoku made of four 2×2 squares as opposed to nine 3×3 squares. To make the visualisation in 3D easier, I will be using four different colours (red, green, blue, yellow) instead of numbers. The usual rules apply: you cannot put the same colour twice in any of the vertical or the horizontal lines or in any of the four 2×2 squares. A completed Sudoku may look like this:
Now, you only have to pile up four of these Sudoku to obtain a cube — except that the slices along each axis also have to satisfy the rules of Sudoku! So you now have to solve 12 (4×3) Sudoku! A completed Cuboku may look like this:
12 Sudoku are formed (the transparent cube has been added to demonstrate how the different slices relate to each other):
Now for the puzzles:
The First Puzzle
Now that we are all set up with the rules and how to play this fabulous game, let’s start with
the first puzzle: complete the rest of the Cuboku.
Now that you have a little practice solving Cuboku, here’s two more challenging puzzles:
It’s All About the Corners!
If the vertices of the cube are coloured as below, how many ways are there to complete the rest of the Cuboku?
Cuboku Counts!
If you begin with the following cubes, how many ways are there to complete the Cuboku?
Pingback: Why Is Rubik's Cube Also Called The Brain’s Cube?